Section 7.4

Decomposition of $N(x) / D(x)$ Into Partial Fractions

a) If $\operatorname{deg}(N(x)) \geq \operatorname{deg}(D(x))$, try long division and then use the method of partial fractions on the remainder.
b) Completely factor the denominator into factors of the form

$$
(p x+q)^{m} \quad \text { and } \quad\left(a x^{2}+b x+c\right)^{n}
$$

where $\left(a x^{2}+b x+c\right)^{n}$ is irreducible.
c) For each factor of the form $(p x+q)^{m}$, the partial fraction decomposition must include the following sum of m fractions.

$$
\frac{A_{1}}{(p x+q)}+\frac{A_{2}}{(p x+q)^{2}}+\cdots+\frac{A_{m}}{(p x+q)^{m}} .
$$

d) For each factor of the form $\left(a x^{2}+b x+c\right)^{n}$, the partial fraction decomposition must include the following sum of n fractions.

$$
\frac{B_{1} x+C_{1}}{\left(a x^{2}+b x+c\right)}+\frac{B_{2} x+C_{2}}{\left(a x^{2}+b x+c\right)^{2}}+\cdots+\frac{B_{n} x+C_{n}}{\left(a x^{2}+b x+c\right)^{n}} .
$$

Problem 1. Write the partial fraction decomposition of the rational expression.
a) $\frac{1}{9 x^{2}-16}$
b) $\frac{-2 x-2}{x^{2}-6 x+8}$
c) $\frac{x}{(x-1)\left(x^{2}+x+1\right)}$
d) $\frac{2+x}{x^{2}-2 x+1}$
e) $\frac{x^{2}-x+1}{\left(x^{2}+1\right)^{2}}$

